

ORA OFFICE OF RATEPAYER ADVOCATES

Evaluation of Utility Integration Capacity Analyses (ICAs)

ICA Workshop-November 10, 2015

Tom Roberts, Senior Engineer

On peak 1,993 kWh x \$0.07981 Mid peak 2,616 kWh x \$0.07981 Off peak 2,710 kWh x \$0.07981 \$21 Energy - Winter Mid peak 1,235 kWh x \$0.07981 \$98.57

Off peak 798 kWh x \$0.07981 \$63.69

ORA's Objectives Regarding DRPs

- CPUC and state policies correctly implemented
- Avoid artificial barriers to distributed energy resource (DER) interconnection –(ICA specific)
- Avoid unreasonable ratepayer expenditures for distribution infrastructure upgrades
- Realize maximum ratepayer savings for distributed resource plan (DRP) investments

ORA Discovery

- First phase of data requests (DR) to PG&E only
- Six DRs related to DRPs, existing assets/facilities, distribution planning, and 43 questions focused on ICA:
 - PG&E's responses generally very helpful in building a better understanding of its ICA
 - PG&E labeled three responses and one attachment labeled Confidential
 - Remaining questions to be addressed through meeting
- ORA can provide copies of <u>questions</u> to parties, but <u>responses</u> should be obtained through PG&F

ORA Results to Date

- Responses to DR questions synthesized into DRAFT flow charts of PG&E ICA process
- List of ICA effectiveness criteria
- Keys to accurate results
- Catalog of open questions
 - Some we hope to discuss today
 - Most we plan to discuss with PG&E directly

ORA Flowcharts of PG&E ICA

- Deemed necessary based on ORA experience with PG&E gas pipelines, post-San Bruno
- Work in progress, <u>NOT</u> vetted by PG&E
- These drafts intended as a strawman to:
 - Help parties and CPUC staff understand ICA data sources, process, tests, and all tools
 - Provide an outline for PG&E to correct and flesh out

General ICA Methodology - Simplified

Source: ORA DRAFT

PG&E ICA Flow Chart

ORA

Source: ORA DRAFT

PG&E ICA Tests and Criteria

- Thermal test
 - kW limit =

$$Min\left(\frac{Capability\ -Gen_{FDR}[mn][hr] + Load_{FDR}[mn][hr]}{DER_{pu}[mh][hr]}\right)$$

- Voltage test
 - kW limit =

$$\frac{\left(3\% * {V_{LL}}^2\right)}{\left(R * PF_{DER} + X * \sin(\cos^{-1}(PF_{DER}))\right)} * PF_{DER}$$

- Islanding test
 - kW limit =

$$= Min \left(Max \left(\left[\frac{Load[mn][hr] * 0.5}{DERpu[mh][hr]} \right], \left[\frac{DG_{existing}[mn][hr] \div RatioThreshold}{DERpu[mh][hr]} \right] \right) \right)$$

- Fault test
 - kW limit =

$$\frac{10\% * I_{Fault\ Duty} * kV_{LL} * \sqrt{3}}{\left(\frac{Fault\ Current_{DER}}{Rated\ Current_{DER}}\right)} * PF_{DER}$$

PG&E ICA Methodology - Part 1

Source: ORA DRAFT

ICA Effectiveness Criteria, Part 1of 2

- 1. Accurate and meaningful results details on Slide 14
- 2. Transparent methodology
- 3. Uniform process that is consistently applied
- 4. Complete coverage of service territory
- 5. Useful formats for results
- Consistent with industry, state, and federal standards

ICA Effectiveness Criteria, Part 2 of 2

- 7. Accommodates portfolios of DER on one feeder
- 8. Reasonable resolution
 - Spatial
 - Temporal
- 9. Easy to update based on improved and approved changes in methodology
- 10. Easy to update based on changes in inputs (loads, DER portfolio, DER penetration, circuit changes, assumptions, etc.)
- 11. Consistent methodologies across large IOUs
- 12. Methodology accommodates variations in local distribution system, such that case by case or distribution planning area (DPA) specific modifications are <u>not</u> needed.

Keys to Accurate and Meaningful Results

- A. Meaningful scenarios
- B. Reasonable technology assumptions
- C. Accurate inputs (i.e. load and DER profiles)
- D. Reasonable tests (i.e. voltage flicker)
- E. Reasonable test criteria (i.e. 3% flicker allowed)
- F. Tests and analysis performed consistently using proven tools, or vetted methodology
- G. Meaningful result metrics provided in useful formats

Preliminary Observations

- Limiting scope to 3-phase circuits leaves out a large portion of feeders (49% based on mileage, 63% based on customers)
- Automating tests via script/codes helps ensure consistency, but full vetting and QA/QC is required
- Granularity of analysis is currently limited by aggregate customer class load profiles
- Test/criteria (thermal vs. flicker) driving IC for each line segment is not currently available

Preliminary Conclusions

- Each IOU should provide full documentation of entire ICA methodology and QA/QC procedures to all parties, including flowcharts of entire methodology
- Parties and CPUC staff should be allowed time to review these additional details before a determination of ICA adequacy and consistency is made
- ORA looks forward to working with utilities to fully understand the ICAs, and working with CPUC staff and parties to help ensure the ICAs meet consensus effectiveness criteria